Chronic ACE inhibition by quinapril modulates central vasopressinergic system.
نویسندگان
چکیده
OBJECTIVE The role of the brain as a target for angiotensin converting enzyme (ACE) inhibitors in the treatment of heart failure and hypertension is unclear. To test the hypothesis that ACE inhibitors may modulate other central neuropeptide systems such as the central vasopressin system, we studied the effects of chronic treatment with the ACE inhibitor, quinapril, on ACE activity and on central vasopressin content in specific brain areas in rats. METHODS 22 rats were chronically treated with quinapril (6 mg.kg-1 BW per gavage daily for 6 weeks; untreated controls, n = 14). ACE density in various brain regions was assessed by in vitro autoradiography using the specific ACE inhibitor, 125I-351A. Vasopressin content was determined in 19 brain areas (micropunch technique) known to be involved in cardiovascular regulation. RESULTS Following chronic quinapril treatment ACE was significantly decreased in the thalamus (-38%), hypothalamus (-37%), hypophysis (-35%), cerebellum (-36%) choroid plexus (-20%), and locus coeruleus (-35%). Additionally, a marked reduction in serum ACE activity (-97%) was observed. Plasma levels of vasopressin were significantly decreased after quinapril treatment (0.97[s.e.m. 0.11] vs. 1.63[0.24] pg.ml-1 in controls, P < 0.05). Vasopressin content was significantly reduced in 9 of 19 specific brain areas. Regarding the hypothalamic vasopressin-producing nuclei, vasopressin was decreased in the paraventricular (292[197] vs. 2379[585] pg.mg-1 crotein in controls; P < 0.001) and supraoptic nuclei (13618[1979] vs. 24525[3894] pg.mg-1 protein; P < 0.05), but not in the suprachiasmatic nucleus. Vasopressin content was significantly reduced in brain areas connected by vasopressinergic fibres originating in the hypothalamic paraventricular nucleus: namely central gray, subcommissural organ, organum vasculosum laminae terminalis, dorsal raphe nucleus, and locus coerules. Vasopressin content was also significantly reduced in the median eminence (5887[1834] vs. 28321[4969] pg.mg-1 protein, P < 0.001), where the hormone is mainly concentrated in the hypothalamo-hypophysial tract. CONCLUSIONS Autoradiographic studies in vitro indicate that orally administered quinapril suppresses central ACE activity after chronic treatment. ACE inhibition by quinapril strongly influences vasopressin content in important brain areas which are involved in central cardiovascular regulation. Therefore, central modulatory effects of ACE inhibitors may also contribute to overall therapeutic efficacy.
منابع مشابه
Renin-angiotensin system inhibition on noradrenergic nerve terminal function in pacing-induced heart failure.
Chronic angiotensin-converting enzyme (ACE) inhibition has been shown to improve cardiac sympathetic nerve terminal function in heart failure. To determine whether similar effects could be produced by angiotensin II AT(1) receptor blockade, we administered the ACE inhibitor quinapril, angiotensin II AT(1) receptor blocker losartan, or both agents together, to rabbits with pacing-induced heart f...
متن کاملHyperkalemia, renal failure, and converting-enzyme inhibition: an overrated connection.
Hyperkalemia is widely viewed as a common complication of ACE inhibition in azotemic patients. These renal failure patients are the patients who benefit most from ACE inhibition. Because we could not confirm this notion after a retrospective evaluation of 236 azotemic patients, we studied 2 models of renal mass reduction. In the first, we did a 5/6 nephrectomy (Nx) on rats and studied them 2 we...
متن کاملAmelioration by quinapril of myocardial infarction induced by coronary occlusion/reperfusion in a rabbit model of atherosclerosis: possible mechanisms.
BACKGROUND The increased severity of the myocardial injury produced by coronary occlusion-reperfusion in models of atherosclerosis is associated with an increase in leukocyte accumulation in the ischemic myocardium. Expression of P-selectin, an adhesion molecule involved in the interaction between leukocytes and endothelium, is increased in atherosclerotic vessels. Long-term angiotensin-convert...
متن کاملVascular effects of quinapril completely depend on ACE insertion/deletion polymorphism.
INTRODUCTION The angiotensin-converting enzyme (ACE) DD-genotype is associated with increased plasma and myocardial ACE-activity. The influence of the ACE insertion/deletion (I/D) polymorphism on the effects of ACE-inhibition on vascular responses has not been previously described. MATERIALS AND METHODS In the randomised, double-blind QUinapril On Vascular ACE and Determinants of Ischemia Stu...
متن کاملAccupril® (Quinapril Hydrochloride Tablets) WARNING: FETAL TOXICITY
Mechanism of Action: Quinapril is deesterified to the principal metabolite, quinaprilat, which is an inhibitor of ACE activity in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor, angiotensin II. The effect of quinapril in hypertension and in congestive heart failure (CHF) appears to result primarily from the inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 34 3 شماره
صفحات -
تاریخ انتشار 1997